
Proceedings of the AAAI Spring Symposium on Artificial Intelligence in Knowledge Management,
Stanford University, March 24-26, 1997.

Roles for Agent Technology in Knowledge Management:
Examples from Applications in Aerospace and Medicine

Jeffrey M. Bradshaw1,3, Robert Carpenter1, Robert Cranfill1, Renia Jeffers1,

Luis Poblete1, Tom Robinson1, Amy Sun1, Yuri Gawdiak2, Isabelle Bichindaritz3,Keith Sullivan3

1. Research and Technology
Boeing Information and Support Services

P.O. Box 3707, M/S 7L-44
Seattle, WA 98124

jeffrey.m.bradshaw@boeing.com

2. NASA Ames Research Center, Code IP
Moffett Field, CA 94035

3. Clinical Research Division

Long-Term Follow-Up, FB-600
Fred Hutchinson Cancer Research Center

1124 Columbia Street
Seattle, WA 98104

Abstract

This paper describes some of the roles of agents in
knowledge management based our experience in aerospace
and medicine. After an overview of agent technology and the
KAoS agent architecture and applications, we show how
agents can help address problems of 1) managing dynamic
loosely-coupled information sources, 2) how to provide a
unifying framework for distributed heterogeneous
components, and 3) coordinating interaction at the
knowledge-level.

1. The Place of Agents in Knowledge
Management and Knowledge Sharing

Predicting the future is difficult business. A few short
years ago, it seemed obvious to most of the knowledge-
based community that an era of widespread knowledge
sharing (Neches, Fikes, Finin, Gruber, Patil, Senator, &
Swartout, 1991) was about to begin (Bradshaw, Ford,
Adams-Webber, & Boose, 1993). Libraries of ontologies
crafted by groups with common interests in particular
knowledge domains would enable the development of
computational environments in which explicitly
represented knowledge would serve as a means of
communication among people and their (Bradshaw, Holm,
Boose, Skuce, & Lethbridge, 1992; Gruber, 1991.

How closely has reality approached our expectations? A
few observations are instructive:

Observation 1. Knowledge sharing as we
originally envisioned it has not occurred on a
widespread basis. This is not meant to imply that
efforts to promote knowledge sharing and
reusability through methods like the use of
ontologies have stopped—indeed, if the
proceedings of the 1996 Banff Knowledge
Acquisition Workshop are any indication, interest

in the topic is healthier than ever. What we are
saying is simply that knowledge sharing efforts
have not yet had the widespread impact in
applications we have been hoping for. Instead, the
unforeseen explosion of Web technology and usage
has led to a different form of knowledge sharing
altogether. No longer does the bottleneck of
knowledge acquisition command our attention as it
once did—instead, we are scrambling to find ways
to impose structure and meaning on the virtual
firehose of mostly document-based “knowledge”
that is available to us freely on the Web. The
transition of Guha from a co-lead of the most
ambitious hand-crafted ontology ever (Guha &
Lenat, 1990) to a developer of methods for
automatically structuring and navigating
information on the Web (Guha, 1996) is a striking
symbol of this very trend.
Observation 2. The standard architecture for

intelligent systems has been turned inside out.
Instead of one or a few large sophisticated systems
that communicate in simple ways, there is an
increasing demand for large groups of simple off-
the-shelf components whose actions are
coordinated in sophisticated ways (Orfali, Harkey,
& Edwards, 1996. That the components will be
heterogeneous, distributed, and highly interactive is
now taken for granted, along with the expectation
that the unifying framework in which they operate
must not only successfully coordinate their use
today but also allow for the introduction of new or
replacement components and technologies in the
future (Bradshaw, in preparation).
Observation 3. Progress in standards for

component-level interoperability has not

obviated the requirement for knowledge-level
interoperability. The wide adoption of distributed
object (CORBA, DCOM, Java), data (HTML,
QuickTime), communication (HTTP, TCP/IP,
IIOP), and component integration standards
(Netscape ONE, OpenDoc, ActiveX, Java Beans)
has provided the means for us to package our
technologies as interoperable components.
However, as has been frequently argued
(Bradshaw, 1996b; Gaines & Shaw, 1996;
Genesereth, 1996; Gennari, Stein, & Musen, 1996;
Kremer, 1996), there is still much work to be done
on “knowledge-level” methodologies and standards
that can ensure that the operational semantics of
these components are explicitly represented.

Software agents have been proposed as one way to help
resolve the problems raised by these three observations.
While it is true that point solutions not requiring agents
could be devised to address many if not all of the issues
raised by above, the aggregate advantage of agent
technology is that it can address all of them at (Harrison,
Chess, & Kershenbaum, 1995.

Software agents can be generally defined as entities that
function continuously and autonomously in a particular
environment that is often inhabited by other agents and
processes. Ideally, agents learn from their experiences,
communicate and cooperate with people and with other
agents, and, as required, move from place to place within
private networks and on the public Internet.

Because the widespread use of agents is a fairly recent
phenomenon, there is often confusion expressed about
whether some particular software component is “really” an
agent or “really” just a program (Franklin & Graesser,
1996). To some degree this is a debate that can never be
fully resolved because agenthood is typically a matter of
degree rather than kind (Bradshaw, 1996a). For example,
while it is true that agents can certainly be implemented in
Java, not all Java programs are equally “agent-like”:

• Mobile agents tend to move around according
to their own agenda (“multi-hop”) whereas
most garden variety applets are obtained from
client pull (“single hop”). This aspect of
relative autonomy is perhaps the most
distinguishing characteristic of agents.

• Agents are capable of preserving their own
state as they are activated, deactivated, and
travel from machine to machine, whereas it is
typical for applets to start up fresh each time.
This gives agents the possibility of adapting
and accumulating knowledge and experience
over long periods of time.

What kind of roles do agents typically perform? At the
user interface, agents can work in conjunction with
compound document frameworks and document
management tools to select the right data, assemble the
needed components, and present the information in the

most appropriate way for a specific user and situation
(figure 1). Behind the scenes, agents can take advantage of
distributed object management, database, workflow,
messaging, transaction, searching, indexing, and
networking capabilities to discover, link, and securely
access the appropriate data and services.

In this paper we describe examples of some of the roles
that agent technology can play in knowledge management.
First we give an overview of the KAoS agent architecture
and some of the aerospace and medical applications to
which it is being applied (section 2). Then we show how
agents can address problems related to the three
observations above by 1) managing dynamic loosely-
coupled information sources (section 3), 2) providing a
unifying framework for distributed heterogeneous
components (section 4), and 3) coordinating interaction at
the knowledge-level (section 5).

Integrated
interface to
knowledge
media

Agent as
personal
assistant

Agents as
intelligent
interface
managers

Agents
behind the
scenes

Interapplication communication

Agent-to-agent
communication

Figure 1. An agent-enabled system architecture.

2. KAoS Overview and Applications
Overview. In 1992, we began a collaboration with the

Seattle University (SU) Software Engineering program to
develop the first version of the KAoS (Knowledgeable
Agent-oriented System) generic agent architecture. We are
currently enhancing two main versions: one written in
portable Java code and the other written in C++ to take
advantage of Microsoft’s ActiveX and DCOM
technologies. KAoS is described in more detail (Bradshaw,
Dutfield, Benoit, & Woolley, 1996).

Basic characteristics of KAoS agents include a
consistent structure providing mechanisms allowing the
management of knowledge, commitments, choices, and
capabilities. Agent dynamics are managed through a cycle
that includes the equivalent of agent birth, life, cryogenic
state, and death.

Each agent contains a generic agent instance, which
implements as a minimum the basic infrastructure for agent
communication. Specific extensions and capabilities can be
added to the basic structure and protocols through standard
object-oriented mechanisms. Mediation agents provide an

interface between a KAoS agent environment and external
entities, resources, or agent frameworks. Proxy agents
extend the scope of the agent-to-agent protocol beyond a
particular domain. The Domain Manager1 controls the
entry and exit of agents in a domain according to policies
set by the domain administrator. The Matchmaker2 can
access information about the location of the generic agent
instance for any agent that has advertised its services. The
Transport Agent3 facilitates teleportation (transfer of an
entire agent from one agent domain to another) and
telesthesia (transfer of the agent’s extension to another
host).

Messages are exchanged between agents in the context
of conversations. Verbs name the type of illocutionary act
(e.g., request, promise) represented by a message. Unlike
most agent communication architectures, KAoS explicitly
takes into account not only the individual message, but also
the various sequences of messages in which it may occur.
Shared knowledge about message sequencing conventions
(conversation policies) enables agents to coordinate
frequently recurring interactions of a routine nature simply
and predictably. Suites provide convenient groupings of
conversation policies that support a set of related services
(e.g., the Matchmaker suite). A starter set of suites is
provided in the architecture but can be extended or
replaced as required.

Our experience with the current KAoS architecture has
shown it to be a powerful and flexible basis for diverse
types of agent-oriented systems. The strength of the
architecture derives from several sources:

• it is built on a foundation of distributed object
technology and is optimized to work with
component integration architectures such as
OpenDoc, ActiveX, and Java and with distributed
object services such as those provided by CORBA
and DCOM;

• it supports structured conversations which:
• preserve and make use of the context of agent

communication at a higher level than single
messages,

• allow differential handling of messages
depending on the particular conversation
policy and the place in the conversation
where the message occurs,

• permit built-in generic handlers for common
negotiation processes such as countering;

• it allows the language of inter-agent
communication to be extended in a principled

1 Also called the CIA (Central Intelligence Agent)
2 Also called the KGB Agent (KAoS Generic Broker).
3 Also called the KOA Agent, after the popular US

campground chain that provides service hookups for the
mobile homes of travelers.

manner, allowing verbs and conversation policies
to be straightforwardly reused, adapted, or
specialized for new situations;

• it groups related sets of conversation policies into
suites supporting a coherent set services;

• it provides facilities for service names (“yellow
pages”), which are registered by agents offering
services;

• it provides facilities for agent names (“white
pages”), which uniquely identify an agent as long
as it persists;

• it is appropriate for a wide variety of domains and
implementation approaches and is platform- and
language-neutral;

• it supports simple agents to be straightforwardly
implemented, while providing the requisite hooks
to develop more complex ones;

• it supports both procedural and declarative
semantics;

• it is designed to interoperate with other agent
frameworks (e.g., Aglets) and protocols (e.g.,
KQML) either by extending or replacing the core
agent-to-agent protocol or by defining specialized
mediation agents.

Applications. The Boeing Company is exploring the use
of portable airplane maintenance aids (PMA) and
networked data access capabilities (Boeing OnLine
Data—BOLD) to provide training and support to
customers (Bradshaw, Richards, Fairweather, Buchanan,
Guay, Madigan, & Boy, 1993; Guay, 1995. A new version
of KAoS is being incorporated into one such prototype of
an intelligent performance support system. The system,
named Gaudi,4 is designed around the processes, activities,
and resources of the work environment. It is intended to
directly and actively support necessary tasks, adapting the
available information and services to the requirements of
the user and situation.

KAoS agent technology is also a key component of a
joint research and development collaboration sponsored by
the National Aeronautics and Space Administration
(NASA) (Gawdiak & Bradshaw, 1997). The intent of the

4 The system is named for the Spanish artist and

architect, Antonio Gaudi (1852-1926), who is most widely
known for his work on the Sagrada Familia temple in
Barcelona (Tarrago, 1992). This monumental unfinished
structure, on which construction still continues after more
than a hundred years, symbolizes our desire to investigate
architectures capable of outliving their designers and of
providing suitable foundations for unanticipated additions
of significant new features. We believe that complex, long-
living structures are something that need to be started by
designers, but continually “finished” by users (Brand,
1994).

collaboration is to develop interface standards and
intelligent network technologies for a secure aviation
extranet that can be commercially implemented and used
by the aviation industry, the Federal Aviation
Administration (FAA), and NASA. A similar use of KAoS
agents will help support large-scale collaboration between
medical staff at the Fred Hutchinson Cancer Research
Center and primary-care physicians worldwide (Bradshaw,
Chapman, Sullivan, Boose, Almond, Madigan, Zarley,
Gavrin, Nims, et al., 1993; Chin, 1997).

While using a broad brush for technological details, we
now describe some of the roles we are exploring for agent
technology in these and other applications.

3. Agents for Managing Loosely-Coupled
Information Sources

A major challenge of building and maintaining dynamic
loosely-coupled distributed systems is finding the required
information sources and computing services on-the-fly. We
have been using agent technology in two different ways to
address this problem.

Matchmaker Services. The Matchmaker’s major
function is to help client agents find information about the
location of the generic agent instance for any agent within
the domain that has advertised its services, and to forward
that request to Matchmakers in other domains where
appropriate.5 In a distributed object environment, the agent
domain could be implemented with a single object
repository manipulated by a Matchmaker agent. In a
CORBA environment, the OMG trader facility could be
used in support of the Matchmaker function.

An agent advertises a service to the Matchmaker if it is
prepared to respond to messages from other agents wishing
to use that service. An advertise message may specify
whether there are any restrictions on which agents may
have access to and visibility of the advertised service. For
example, certain services may be made available only to
client agents within the advertising agent’s own domain.
An agent desiring to use a service may ask a Matchmaker
to recommend available agents that have previously
advertised that service. A recommend query may involve
simple or sophisticated inference in matching potential
service provider attributes to the requirements of the
requesting agent.

Independent (external) hyperlinking. The SGML
standard for document markup, which is in wide use in the
aviation industry, was originally developed to solve

5 The Matchmaker performs a similar rôle to a KQML

“agent server” facilitator which uses the advertise and
recommend performatives (Finin, Labrou, & Mayfield,
1996). See (Kuokka & Harada, 1995) for a discussion of
KQML and matchmaking; and (Decker, Williamson, &
Sycara, 1996) for a comparison of matchmaking and
brokering approaches.

problems of interchange between users of complex
structured documents (Goldfarb, 1990). However as its
usage has grown, the notation has been increasingly
applied to other problems such as hyperlinking that are less
well-suited to this general approach. The popular HTML
format, on which Web-documents are based, is a simplified
derivation of SGML. Figure 2 illustrates how markup-
based linking works.

An increasing number of researchers are recognizing that
linking information has special characteristics which place
it outside the realm of document content (Tucker, 1994).
They advocate the use of independent links, i.e., linking
information that is encoded and stored separately from the
content. Representing links independently rather than
embedded as descriptive markup is not necessarily
inconsistent with the use of SGML or HTML. As DeRose
observes “SGML is distinct from descriptive markup, and
descriptive markup is distinct from what we need to do to
maintain a database of text” (DeRose & Raymond, 1993).
He concludes that “[embedded] link storage as a sole
linking mechanism is inadequate for managing large
evolving multi-user hyperdocuments” (DeRose & Durand,
1994). Among the advantages of independent linking are
(Davis, Hall, Heath, Hill, & Wilkins, 1992; Malcolm,
Poltrock, & Schuler, 1991):

• New or updated links can be associated with read-
only data, such as data available on CD-ROM.

• Different link sets can be added at runtime, or
dynamically activated or deactivated for different
organizations, users, and situations. This allows for
extensive end-user customization of links, and
minimizes the problem of too many irrelevant links
for a given context (Boy, 1992; Boy, 1991.

• Through simple extensions, virtually any application
can take part in two-way linking relationships
(Davis, Knight, & Hall, 1994. Open hyperlinking is
becoming an increasingly popular approach (Davis,
Lewis, & Rizk, 1996; Østerbye & Wiil, 1996).

• Dynamic query links, whose linkends and anchors
are calculated at runtime, can be used (DeRose &
Durand, 1994).

• The general design is compatible with the emerging
new generation of linking standards typified by the
ilink approach in the HyTime extensions to SGML
(DeRose & Durand, 1994).

• Configuration control, management of linkend
location changes, and multi-user access can be off
loaded from the document architecture onto the link
server and its underlying database (Böhm & Aberer,
1994; Böhm, Müller, & Neuhold, 1994.

• Adaptive hyperlink architectures, such as those
developed at NASA-Ames on the HyperMan
project, can be more easily supported (Mathé, 1993;
Mathé & Chen, 1994). (explained in more detail
below).

• Links are stored as embedded hidden “markup” of the document

• Standard kind of linking for SGML and HTML (WWW) documents

• Because of the use of markup, new links cannot be added without
 altering the source data

• HTML documents can sometimes compute rather than explicitly store
 the link destination, but the mechanism still relies on embedded markup

• Links are inherently one-way, and communication with non-SGML/HTML
 applications is typically in limited master-slave, viewer-only mode

Explicit Data Pointer

Figure 2. Markup-based linking.

Figure 3 illustrates how independent linking works.

Because Boeing has already invested heavily in developing
robust and efficient approaches to linking within SGML
documents, our goal has not been to completely replace the
current embedded scheme with independent links. The two
approaches can be straightforwardly combined and used
simultaneously in the context where each makes sense.6

Link
Database

Server

• Links are stored in one or more separate databases; link data points to
 places in the documents, but document data is “unaware” of links

• Standard kind of linking in modern hypermedia systems

• Because links are stored externally, they can be added or modified
 without altering the source data

• Links are inherently two-way, unless otherwise specified

Explicit Data Pointer

Communication

Figure 3. Independent linking.

Building on the foundation of independent linking, we

have developed an agent-assisted approach (see figure 4).
Unlike the typical “launch-and-forget” interaction between
linked applications, each active application or software
component is assigned one or more agents to be aware both
of what is going on in the application and what is going on
in the rest of the agent world. Thus, once links are
established and traversed, back-channels of communication
can be used to keep all active applications and documents
“in synch” with the current context.

6 It is important to note that many of the benefits of

external linking can also be achieved by generating and
interpreting SGML or HTML documents dynamically
rather than storing them as static entities.

• Each active application or software component is assigned one or more
 agents to be aware both of what is going on in the application and what is
 going on with the rest of the agents

• Interapplication communication is peer-to-peer rather than master-slave;
 persistence of agents assures richer ongoing communication than what
 is possible in more typical “launch-and-forget” modes of interaction

Explicit Data Pointer

Communication

Figure 4. An agent-assisted approach to independent

linking.

4. Agents that Provide a Unifying Framework
for Distributed Heterogeneous Components

Since airplanes and airports will last for several decades,
and information systems become out-of-date on a much
more rapid schedule, we need to be concerned about
whether any software architecture has a possibility of
outliving its designers and of providing a suitable
foundation for unanticipated additions of significant new
features. Current consensus on these issues is that the use
of “objects” or “components” is a necessary but not
sufficient enabler of reusability. Rather, it seems that the
most robust unit of reusability is a “framework” (Grimes &
Potel, 1995). We have prototyped various versions of a
three-schema framework (Ford, Bradshaw, Adams-
Webber, & Agnew, 1993), with agents providing dynamic
coupling and interoperability between components using
standard interfaces and data formats. The three-schema
approach allows each level to be designed with specific
purposes in mind: the external schema are optimized for
human understanding and communication, the conceptual
schema for semantic completeness, and the internal schema
for performance. Because of this paper’s focus on agents,
we will limit our discussion to this topic.

We think of the agents as being sorted into functional
layers: presentation services, application services, generic
agent services, and data services (figure 5). Ovals
contained within the large gray area represent various
agents.

Executive
Application

Services

Presentation
Services

Data
Services

Generic Agent
Services

Data
Monitors

Data
Locators

Data
Accessors

Domain
Manager

Match-
maker

Context
Manager

Others…

Others…

QT
Agent

SGML
Agent

HTML
Agent

UI
Manager

Proxies

Others…

Figure 5. Agent-assisted component integration

architecture

Agents providing presentation services are designed to

hide the differences between viewers of different data
types. From the point of view of the other agents, this
means that there is a core viewer service protocol that is
shared among all viewers. A viewer of a new kind of data
need only implement an agent that converts this minimal
viewer service protocol to the specific call formats that the
viewer application expects. Once this is done, the new
viewer is a full player in the architecture. The additional
level of indirection provided by the agents allows
components to be incrementally replaced with any other
application, written in any programming language, without
affecting the rest of the application. For this reason, we say
that the architecture supports a “non-stick GUI.”

The application services layer currently contains any
agents supporting application specific services, in addition
to the executive, which works with the context manager to
deal with state information.

Generic agent services include the following:
• Matchmakers (MM), which were described

previously.
• Domain Managers (DM), which keep track of

a set of properties for some logical or
administrative grouping of agents, provide
“white pages” services for agents, manage the
secure exit and entry of mobile agents into a
domain, and otherwise facilitate agent
interaction. This capability could make use of
such things as underlying OMG Naming and
Security Services and the Mobile Agent
Facility, if available.

• Context Managers (CM), which interact with
user-interface and task-specific agents to
provide a global perspective on the user and
situation that conditions the behavior of
agents and tools.

• Proxies, which provide various connection
and compatibility services to agents residing
in different domains.

Data services include data locators which encapsulate
search and indexing functions, data accessors which
retrieve data from heterogeneous data sources, and data
monitors which feed information to clients based on user-
configurable “push” policies.

5. Agents for Coordinating Interaction at the
Knowledge-Level

Figure 6 is a view of how agents fit into the overall
client-server architecture. Specific client applications are
built from various components that are integrated via an
open presentation layer bus, such as Netscape’s
LiveConnect. The purpose of the bus is to allow HTML
and client-side components (KAoS agents, Java,
JavaScript, plug-ins and ActiveX components, ORBs) to

share a common object and messaging model, enabling
seamless integration of tools, services, and user-interface
elements.

Presentation Layer Component Bus

CORBA Component Bus

IIOP

Local
Client
Data

Servers

Clients

Web
Client

A2A

End-User
Tools

Data
Warehouses

Web Servers HTTP, RMI

JDBC

Reusable Components
and CORBA

Services

Client
ORB

Javascript
Java,

Plug-Ins

Tools/Components

KAoS
Agent

Services

KAoS
Agent Services

Figure 6. Conceptual view of the overall architecture.

In addition to standard client-server connection protocols
such as HTTP, RMI, and JDBC, an IIOP connection to a
server-side CORBA component bus will be provided. IIOP
enables developers to selectively expose their interfaces,
providing a standard way for system components to
provide and access required services and data from each
other. Interfaces are exposed to the ORB by compiling an
interface specification written in IDL (Interface Definition
Language). This not only ensures interoperability among
our end-user tools and reusable components, but also
allows us to take advantage of third-party CORBA services
that can be used and customized as needed.

End-user tools and reusable components can be
implemented as any combination of local Java applets,
plug-ins, ActiveX components, and IIOP-enabled server-
side components as desired. We look forward to taking
advantage of forthcoming component integration
frameworks such as JavaBeans will eventually allow the
incorporation of OpenDoc LiveObjects and ActiveX
components that can function as full peers to Java applets.

Though the lowest-common-denominator methods
provided through the component bus will be adequate to
enable interoperability between most system components,
some specialized intelligent software modules may require
a higher level of communication semantics than can be
directly supported by IDL alone.

KAoS agents on the client and on the server can
communicate using an agent-to-agent (A2A) protocol that
runs on top of standard lower-level protocols such as IIOP
and sockets. Generic agent services built on the foundation
of existing distributed object services (such as described in
section 4) will allow software components the option of

using a common agent-to-agent interlingua (an “agent
bus”) to communicate and coordinate their actions at the
“knowledge-level” rather than relying on more primitive
program-to-program protocols. Shared ontologies provide
a common vocabulary for collaboration on problems that
span different toolsets and information sources. For
example, the diagram in Figure 7 shows two specialized
components (SA1 and SA2) that are communicating and
coordinating their actions by means of their respective
mediation agents (MA1 and MA2), which live within the
generic agent services domain.

Figure 7. Example of two specialized components

interacting through the “agent bus.”

The alternative to mediated communication between two
components, is to rely on dedicated “full bridges” between
each type of agent. While such an approach is possible for
a small, fixed number of agent types, it quickly becomes
impractical because the number of bridges increases as (n2
- n)/2 with the number of types of components. In the
mediated approach, each agent type provides a “half
bridge” to the common agent-to-agent protocol, greatly
simplifying the work of the developers

Conclusion
Our experience to date has demonstrated some of the

important roles that software agents can play in knowledge
management. We expect to learn much more as we
continue to apply them in a variety of settings.

Acknowledgements
The work described in this chapter was supported in part

by grant R01HS09407 from the Agency on Health Care
Policy and Research and by a collaborative research
agreement with NASA Ames Research Center.

References
Apple_Computer (1993a). AppleScript Language

Guide., Reading, MA: Addison-Wesley.

Apple_Computer (1993b). Inside Macintosh:
Interapplication Communication., Reading, MA: Addison-
Wesley.

Böhm, K., & Aberer, K. (1994). Storing HyTime
documents in an object-oriented database. N. R. Adam, B.
K. Bhargava, & Y. Yesha (Ed.), Proceedings of the Third
International Conference on Information and Knowledge
Management (CIKM-94), (pp. 26-33). Gaithersburg, MD, ,
New York: ACM ,

Böhm, K., Müller, A., & Neuhold, E. (1994). Structured
document handling: A case for integrating databases and
information retrieval. N. R. Adam, B. K. Bhargava, & Y.
Yesha (Ed.), Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM-94), (pp. 147-154). Gaithersburg, MD, , New
York: ACM ,

Boy, G. (1992). Computer integrated documentation. In
E. Barrett (Ed.), Sociomedia: Multimedia, Hypermedia,
and the Social Construction of Knowledge. (pp. 507-531).
Cambridge, MA: MIT Press.

Boy, G. A. (1991). Indexing hypertext documents in
context. Proceedings of the Third ACM Conference on
Hypertext, . San Antonio, TX, , ,

Bradshaw, J. M. (1996a). An introduction to software
agents. In J. M. Bradshaw (Ed.), Software Agents. (pp. in
preparation). Cambridge, MA: AAAI/MIT Press.

Bradshaw, J. M. (1996b). KAoS: An open agent
architecture supporting reuse, interoperability, and
extensibility. B. R. Gaines & M. Musen (Ed.),
Proceedings of the Tenth Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, 2 (pp. 48:1-48:20).
Banff, Alberta, Canada, , ,

Bradshaw, J. M. (in preparation). How computer-based
training learns: What happens after it’s built. In A. J.
Cañas, P. Feltovich, & S. Papert (Ed.), Education and
Smart Machines.

Bradshaw, J. M., Chapman, C. R., Sullivan, K. M.,
Boose, J., Almond, R. G., Madigan, D., Zarley, D., Gavrin,
J., Nims, J., & Bush, N. (1993). KS-3000: An application
of DDUCKS to bone-marrow transplant patient support.
Proceedings of the Seventh European Knowledge
Acquisition for Knowledge-Based Systems Workshop
(EKAW-93) (complement), (pp. 57-74). Toulouse and
Caylus, France, , ,

Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J.
D. (1996). KAoS: Toward an industrial-strength generic
agent architecture. In J. M. Bradshaw (Ed.), Software
Agents. (pp. 375-418). Cambridge, MA: AAAI/MIT Press.

Bradshaw, J. M., Ford, K. M., Adams-Webber, J. R., &
Boose, J. H. (1993). Beyond the repertory grid: New
approaches to constructivist knowledge acquisition tool
development. In K. M. Ford & J. M. Bradshaw (Ed.),
Knowledge Acquisition as Modeling. (pp. 287-333). New
York: John Wiley.

Bradshaw, J. M., Holm, P. D., Boose, J. H., Skuce, D., &
Lethbridge, T. C. (1992). Sharable ontologies as a basis for

communication and collaboration in conceptual modeling.
Proceedings of the Seventh Knowledge Acquisition for
Knowledge-Based Systems Workshop, (pp. 3.1-3.25).
Banff, Alberta, Canada, , ,

Bradshaw, J. M., Richards, T., Fairweather, P.,
Buchanan, C., Guay, R., Madigan, D., & Boy, G. A.
(1993). New directions for computer-based training and
performance support in aerospace. Proceedings of the
Fourth International Conference on Human-Machine
Interaction and Artificial Intelligence in Aerospace., .
Toulouse, France, 28-30 September, , ,

Brand, S. (1994). How Buildings Learn: What Happens
after They’re Built., New York: Viking Penguin.

Brockschmidt, K. (1994). Inside OLE 2., Redmond, WA:
Microsoft Press.

Chin, T. (1997). Federal grants will help develop web-
based decision support tools. Health Data Network News,
20, January 20, 1, 8.

Davis, H., Hall, W., Heath, I., Hill, G., & Wilkins, R.
(1992). Towards an integrated information environment
with open hypermedia systems. Proceedings of the ACM
ECHT Conference, . Milan, Italy, , ,

Davis, H., Lewis, A., & Rizk, A. (1996). OHP: A draft
proposal for a standard Open Hypermedia Protocol.
Proceedings of the Second Workshop on Open Hypermedia
Systems, Hypermedia-96, . Washington, D.C., , New
York: ACM Press ,

Davis, H. C., Knight, S., & Hall, W. (1994). Light
hypermedia link services: A study of third party
application integration. Proceedings of the 1994 European
Conference on Hypermedia Technology (ECHT ‘94), (pp.
41-50). Edinburgh, Scotland, , ,

Decker, K., Williamson, M., & Sycara, K. (1996).
Matchmaking and brokering. Proceedings of the Second
International Conference on Multiagent Systems (ICMAS
96), (pp. in press). , , New York: ACM Press ,

DeRose, S. J., & Durand, D. G. (1994). Making
Hypermedia Work: A User’s Guide to HyTime., Norwell,
MA: Kluwer Academic Publishers.

DeRose, S. J., & Raymond, D. (1993). SGML for
implementers (Tutorial Course #20). S. Poltrock (Ed.),
Hypertext ‘93, . Seattle, WA, , ,

Finin, T., Labrou, Y., & Mayfield, J. (1996). KQML as
an agent communication language. In J. M. Bradshaw
(Ed.), Software Agents. (pp. in preparation). Cambridge,
MA: AAAI/MIT Press.

Ford, K. M., Bradshaw, J. M., Adams-Webber, J. R., &
Agnew, N. M. (1993). Knowledge acquisition as a
constructive modeling activity. In K. M. Ford & J. M.
Bradshaw (Ed.), Knowledge Acquisition as Modeling. (pp.
9-32). New York: John Wiley.

Franklin, S., & Graesser, A. (1996). Is it an agent or just
a program?: A taxonomy for autonomous agents.
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, . , , Springer-
Verlag ,

Gaines, B. R., & Shaw, M. L. G. (1996). A networked,
open architecture knowledge management system. B. R.
Gaines & M. Musen (Ed.), Proceedings of the Tenth Banff
Knowledge Acquisition for Knowledge-Based Systems
Workshop, 2 (pp. 45:1-45:22). Banff, Alberta, Canada, , ,

Gawdiak, Y., & Bradshaw, J. (1997). The NASA
Aviation Extranet Collaboration. Presentation to the
Aviation Industry Computer-based Training Committee
(AICC), . La Jolla, CA, , ,

Genesereth, M. R. (1996). An agent-based framework
for interoperability. In J. M. Bradshaw (Ed.), Software
Agents. (pp. in press). Cambridge, MA: AAAI/MIT Press.

Gennari, J. H., Stein, A. R., & Musen, M. A. (1996).
Reuse for knowledge-based systems and CORBA
components. B. R. Gaines & M. Musen (Ed.), Proceedings
of the Tenth Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, 2 (pp. 46:1-46:16). Banff,
Alberta, Canada, , ,

Goldfarb, C. F. (1990). The SGML Handbook., Oxford:
Oxford University Press.

Grimes, J., & Potel, M. (1995). Software is headed
toward object-oriented components. IEEE
Computer(August), 24-25.

Gruber, T. R. (1991). The role of common ontology in
achieving sharable, reusable knowledge bases. In J. A.
Allen, R. Fikes, & E. Sandewall (Ed.), Principles of
Knowledge Representation and Reasoning: Proceedings of
the Second International Conference. (pp. 601-602). San
Mateo, CA: Morgan Kaufmann.

Guay, R. L. (1995). Notebook simulations as electronic
performance support tools for airline maintenance. N. R.
Hartley (Ed.), Proceedings of the Royal Aeronautical
Society Flight Simulation Group Simulation in Aircraft
Maintenance Training Conference, . London, England, , ,

Guha, R. V. (1996). Meta Content Format. Apple
Computer,

Guha, R. V., & Lenat, D. B. (1990). Cyc: A midterm
report. AI Magazine, Fall, 33-58.

Harrison, C. G., Chess, D. M., & Kershenbaum, A.
(1995). Mobile agents: Are they a good idea? IBM T. J.
Watson Research Center, March 28.

Kremer, R. (1996). Toward a multi-user, programmable
web concept mapping “shell” to handle multiple
formalisms. B. R. Gaines & M. Musen (Ed.), Proceedings
of the Tenth Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, 2 (pp. 48:1-48:20). Banff,
Alberta, Canada, , ,

Kuokka, D., & Harada, L. (1995). On using KQML for
matchmaking. V. Lesser (Ed.), Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-
95), (pp. 239-245). San Francisco, CA, , Menlo Park:
AAAI/MIT Press ,

Malcolm, K. C., Poltrock, S. E., & Schuler, D. (1991).
Industrial strength hypermedia: Requirements for a large
engineering enterprise. Proceedings of the Third ACM
Conference on Hypertext, . San Antonio, TX, , ,

Mathé, N. (1993). Facilitating access to information in
large documents with an intelligent hypertext system.
Proceedings of the AIAA computing in Aerospace 9
Conference, . San Diego, CA, , ,

Mathé, N., & Chen, J. (1994). A user-centered approach
to adaptive hypertext based on an information relevance
model. Proceedings of the Fourth International
Conference on User Modeling (UM ‘94), (pp. 107-114).
Hyannis, MA, , ,

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R.,
Senator, T., & Swartout, W. R. (1991). Enabling
technology for knowledge sharing. AI Magazine, 36-55.

Orfali, R., Harkey, D., & Edwards, J. (1996). The
Essential Distributed Objects Survival Guide., New York:
John Wiley.

Østerbye, K., & Wiil, U. K. (1996). The flag taxonomy
of open hypermedia systems. Proceedings of the Seventh
ACM Conference on Hypertext (Hypertext 96), (pp. 129-
139). Washington, D.C., , New York: ACM Press ,

Tarrago, S. (1992). Gaudi., Barcelona, Spain: Editorial
Escudo de Oro, S.A.

Tucker, H. A. (1994). Using HyTime for external
references. Hellerup, Denmark: DOCUMENTA ApS, July
25,1994.

